43,433 research outputs found

    Micromagnetic Simulations of Ferromagnetic Rings

    Full text link
    Thin nanomagnetic rings have generated interest for fundamental studies of magnetization reversal and also for their potential in various applications, particularly as magnetic memories. They are a rare example of a geometry in which an analytical solution for the rate of thermally induced magnetic reversal has been determined, in an approximation whose errors can be estimated and bounded. In this work, numerical simulations of soft ferromagnetic rings are used to explore aspects of the analytical solution. The evolution of the energy near the transition states confirms that, consistent with analytical predictions, thermally induced magnetization reversal can have one of two intermediate states: either constant or soliton-like saddle configurations, depending on ring size and externally applied magnetic field. The results confirm analytical predictions of a transition in thermally activated reversal behavior as magnetic field is varied at constant ring size. Simulations also show that the analytic one dimensional model continues to hold even for wide rings

    The graduation performance of technology business incubators in China's three tier cities: the role of incubator funding, technical support, and entrepreneurial mentoring

    Get PDF
    This study examines the effects of technology business incubator (TBI)’s funding, technical support and entrepreneurial mentoring on the graduation performance of new technology-based firms in China’s three tier cities. Using new dataset on all TBIs and incubated new technology-based firms from government surveys conducted over five consecutive years from 2009 to 2013 combined with archival and hand-collected data, we find the effects of incubator services on the early growth of new technology-based firms vary according to the local context. Technical support facilities and entrepreneurial mentoring from TBIs are found to have significantly and positively influenced the early development of the firms in the four most affluent tier 1 cities, whilst these effects become less pronounced for the tier 2 and tier 3 cities. These two services are also found to influence graduation performance in the government and university types of TBI respectively. Results support the notion that the effectiveness of an incubators services is shaped by the level of a city’s socio-economic development and that the city location of a TBI does impact the graduation performance of its incubatees

    Symmetry protected topological orders of 1D spin systems with D2+T symmetry

    Full text link
    In [Z.-X. Liu, M. Liu, X.-G. Wen, arXiv:1101.5680], we studied 8 gapped symmetric quantum phases in S=1 spin chains %/ladders which respect a discrete spin rotation D2⊂SO(3)D_2 \subset SO(3) and time reversal TT symmetries. In this paper, using a generalized approach, we study all the 16 possible gapped symmetric quantum phases of 1D integer spin systems with only D2+TD_2+T symmetry. Those phases are beyond Landau symmetry breaking theory and cannot be characterized by local order parameters, since they do not break any symmetry. They correspond to 16 symmetry protected topological (SPT) orders. We show that all the 16 SPT orders can be fully characterized by the physical properties of the symmetry protected degenerate boundary states (end `spins') at the ends of a chain segment. So we can measure and distinguish all the 16 SPT orders experimentally. We also show that all these SPT orders can be realized in S=1 spin ladder models. The gapped symmetric phases protected by subgroups of D2+TD_2+T are also studied. Again, all these phases can be distinguished by physically measuring their end `spins'.Comment: 10+page

    Translation-symmetry protected topological orders on lattice

    Full text link
    In this paper we systematically study a simple class of translation-symmetry protected topological orders in quantum spin systems using slave-particle approach. The spin systems on square lattice are translation invariant, but may break any other symmetries. We consider topologically ordered ground states that do not spontaneously break any symmetry. Those states can be described by Z2A or Z2B projective symmetry group. We find that the Z2A translation symmetric topological orders can still be divided into 16 sub-classes corresponding to 16 new translation-symmetry protected topological orders. We introduced four Z2Z_2 topological indices ζkˇ=0,1\zeta_{\v{k}}=0,1 at kˇ=(0,0)\v {k}=(0,0), (0,π)(0,\pi), (π,0)(\pi, 0), (π,π)(\pi ,\pi) to characterize those 16 new topological orders. We calculated the topological degeneracies and crystal momenta for those 16 topological phases on even-by-even, even-by-odd, odd-by-even, and odd-by-odd lattices, which allows us to physically measure such topological orders. We predict the appearance of gapless fermionic excitations at the quantum phase transitions between those symmetry protected topological orders. Our result can be generalized to any dimensions. We find 256 translation-symmetry protected Z2A topological orders for a system on 3D lattice

    Phase structures of strong coupling lattice QCD with overlap fermions at finite temperature and chemical potential

    Full text link
    We perform the first study of lattice QCD with overlap fermions at finite temperature TT and chemical potential μ\mu. We start from the Taylor expanded overlap fermion action, and derive in the strong coupling limit the effective free energy by mean field approximation. On the (μ,T\mu,T) plane and in the chiral limit, there is a tricritical point, separating the second order chiral phase transition line at small μ\mu and large TT, and first order chiral phase transition line at large μ\mu and small TT

    Complete classification of 1D gapped quantum phases in interacting spin systems

    Full text link
    Quantum phases with different orders exist with or without breaking the symmetry of the system. Recently, a classification of gapped quantum phases which do not break time reversal, parity or on-site unitary symmetry has been given for 1D spin systems in [X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B \textbf{83}, 035107 (2011); arXiv:1008.3745]. It was found that, such symmetry protected topological (SPT) phases are labeled by the projective representations of the symmetry group which can be viewed as a symmetry fractionalization. In this paper, we extend the classification of 1D gapped phases by considering SPT phases with combined time reversal, parity, and/or on-site unitary symmetries and also the possibility of symmetry breaking. We clarify how symmetry fractionalizes with combined symmetries and also how symmetry fractionalization coexists with symmetry breaking. In this way, we obtain a complete classification of gapped quantum phases in 1D spin systems. We find that in general, symmetry fractionalization, symmetry breaking and long range entanglement(present in 2 or higher dimensions) represent three main mechanisms to generate a very rich set of gapped quantum phases. As an application of our classification, we study the possible SPT phases in 1D fermionic systems, which can be mapped to spin systems by Jordan-Wigner transformation.Comment: 15 pages, 3 figure

    Quantum orders in an exact soluble model

    Full text link
    We find all the exact eigenstates and eigenvalues of a spin-1/2 model on square lattice: H=16g∑iSiySi+xxSi+x+yySi+yxH=16g \sum_i S^y_i S^x_{i+x} S^y_{i+x+y} S^x_{i+y}. We show that the ground states for g0g0 have different quantum orders described by Z2A and Z2B projective symmetry groups. The phase transition at g=0g=0 represents a new kind of phase transitions that changes quantum orders but not symmetry. Both the Z2A and Z2B states are described by Z2Z_2 lattice gauge theories at low energies. They have robust topologically degenerate ground states and gapless edge excitations.Comment: 4 pages, RevTeX4, More materials on topological/quantum orders and quantum computing can be found in http://dao.mit.edu/~we

    Plasmon-exciton polaritons in 2D semiconductor/metal interfaces

    Get PDF
    The realization and control of polaritons is of paramount importance in the prospect of novel photonic devices. Here, we investigate the emergence of plasmon-exciton polaritons in hybrid structures consisting of a two-dimensional (2D) transition metal dichalcogenide (TMDC) deposited onto a metal substrate or coating a metallic thin-film. We determine the polaritonic spectrum and show that, in the former case, the addition of a top dielectric layer, and, in the latter, the thickness of the metal film,can be used to tune and promote plasmon-exciton interactions well within the strong coupling regime. Our results demonstrate that Rabi splittings exceeding 100 meV can be readily achieved in planar dielectric/TMDC/metal structures under ambient conditions. We thus believe that this work provides a simple and intuitive picture to tailor strong coupling in plexcitonics, with potential applications for engineering compact photonic devices with tunable optical properties.Comment: 6 pages, including 5 figures and reference
    • …
    corecore